Abstract
Ag/AgCl/V2O5 nanocatalysts with one dimensional (1D) architecture was synthesized in carboxylic acid functionalized multi-walled carbon nanotubes for methylene blue dye degradation. The growth of uniformly distributed nanoparticles along the carbon-nanotubes was revealed from high resolution transmission electron microscopy and atomic force microscopy analyses. Raman spectroscopy and transmission electron microscopy analyses also confirmed for the creation of defects in the multi-walled carbon nanotube. The hybrid nanocomposite appeared as a suitable photocatalyst for degradation of methylene blue dye absorbing the light in the visible range of solar spectrum. The presence of interactions within the nanoparticles and with the nanotubes was believed to enhance the photo-oxidation process. The creation of defects in the carbon nanotube on modification with Ag/AgCl/V2O5 improved the photocatalytic activity by enhancing the photoelectron transfer process. About ∼90% of the total organic carbon of the dye molecule was found to decompose into CO2, H2O and inorganic ions within 25 min under sunlight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.