Abstract
α-MnO 2/graphene nanocomposites are synthesized via a facile wet-chemical route, and α-MnO 2 nanosheets are uniformly distributed on the surface of graphene. Their high performance as lithium ion battery anodes is obtained. Their reversible capacity at C/10 rate is up to 726.5 mA h/g, and maintains up to 635.5 mA h/g after 30 cycles. Such a performance can be partly attributed to high electron conductivity, excellent flexibility and high specific surface area of graphene. Also, α-MnO 2 nanostructures can play a role in preventing the pile of graphene nanosheets with the loss of their active surface area. The present results indicate that α-MnO 2/graphene nanocomposites have potential applications in lithium-ion battery anodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.