Abstract

Three new β-substituted “push-pull” Zn(II) porphyrin dyes with various electron donors at meso-positions and cyanoacetic acid as acceptor at β-position have been designed and synthesized. These porphyrins have been characterized by UV-Vis, Fluorescence, 1H NMR and 13C NMR spectroscopic techniques and cyclic voltammetric studies. The Soret and Q band of Zn(II) porphyrin dyes were found to be red-shifted (30–35 nm) as compared to ZnTPP. The fluorescence quenching and the decrement in quantum yield and lifetime suggest intramolecular charge transfer from donor to acceptor. Zn porphyrins exhibited anodic shift in their first redox potentials (0.03–0.11 V) as compared to ZnTPP. The HOMO-LUMO energy levels of Zn porphyrin dyes were compared with the conduction band of TiO2 and the electrolyte I−/I3−. The HOMO levels of all the dyes are sufficiently higher than the energy level of electrolyte I−/I3− and LUMO levels significantly lower than the conduction band of TiO2 which reflect the feasibility of facile electron-transfer. ZnT(Mes)P(CN-COOH) has been co-sensitized with N719 dye to further improve the PCE efficiency. These dyes displayed power conversion efficiency (PCE) of η = 1.72–3.13% where co-sensitized ZnT(Mes)P(CN-COOH) (N719) dye demonstrated maximum PCE efficiency up to 5.35%, with a Jsc of 11.8 mA cm−2, a Voc of 630 mV and a fill factor (FF) of 72% due to better light harvesting capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.