Abstract
Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors. We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical properties. High Resolution Transmission Electron Microscopy (HRTEM) analysis shows that the diameters of SiCN−BN core−shell nanocomposites and BN shells are 50‒400 nm and 5‒25 nm, respectively. BN nanosheets (BNNSs) are also observed with an average sheet size of 5‒15 nm. The photophysical properties of these nanocomposites are characterized using the UV-Vis and photoluminescence (PL) analyses. The as-produced composites have emission behavior including an emission lifetime of 2.5 ns (±20 ps) longer observed in BN doped SiCN than that seen for SiC nanoparticles. Our results suggest that the SiCN/BN nanocomposites act as semiconductor displaying superior width photoluminescence at wavelengths spanning the visible to near-infrared (NIR) spectral range (400‒700 nm), owing to the heterojunction of the interface between the SiC(N) nanowire core and the BN nanosheet shell.
Highlights
Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors
We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical properties
A simple pyrolysis route promoted by a Co catalyst induces the formation of BN nanosheets (BNNSs) wrapped around schematic diagram of (SiC)(N) nanowires
Summary
Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors. We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical properties. Our results suggest that the SiCN/BN nanocomposites act as semiconductor displaying superior width photoluminescence at wavelengths spanning the visible to near-infrared (NIR) spectral range (400‒700 nm), owing to the heterojunction of the interface between the SiC(N) nanowire core and the BN nanosheet shell. Emission wavelengths can be precisely controlled by the nanostructure composition, the average grain size and the formation of core-shell structures[4,13,14,15]. SiCN can be considered as a new type of luminescent semiconductor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.