Abstract

Under simulated light irradiation, the aerobic oxidation of benzylamine to N,N-benzylidenebenzylamine was carried out as a model reaction to investigate the photocatalytic activity of a hydrothermally prepared composite based on BiOF and BiFeO3 materials. The prepared photocatalysts were characterized using several spectroscopic techniques, such as powder X-ray diffraction (PXRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Band gap analysis showed that the composite exhibits a band gap that lies in the UV region (3.5 eV). Nonetheless, pristine BiOF and BiFeO3 exhibited band gaps of 3.8 eV and 2.15 eV, respectively. N,N-benzylidenebenzylamine was selectively achieved with a high conversion yield of ~80% under atmospheric conditions in which the product was confirmed using 1H-NMR, 13C-NMR, and FTIR spectroscopic techniques. Various control experiments were conducted to further confirm the enhanced photocatalytic performance of the reported composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.