Abstract
Foodborne pathogens can have devastating repercussions and significantly threaten public health. Therefore, it is indeed essential to guarantee the sustainability of our food production. Food preservation and storage using nanocomposites is a promising strategy. Accordingly, the present research's objectives were to identify and isolate a few foodborne pathogens from food products, (ii) synthesize and characterize silver nanoparticles (AgNPs) using wet chemical reduction into the lamellar space layer of montmorillonite (MMT), and (iii) investigate the antibacterial potential of the AgNPs/MMT nanocomposite versus isolated strains of bacteria. Six bacterial species, including Escherichia coli, Salmonella spp., Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus were isolated from some food products (meat, fish, cheese, and vegetables). The Ag/MMT nanocomposite was synthesized and characterized using UV-visible spectroscopy, transmission electron microscopy, particle size analyzer, zeta potential, X-ray diffraction (XRD), and scanning electron microscopy with dispersive energy X-ray (EDX). The antibacterial effectiveness of the AgNPs/MMT nanocomposite further investigated distinct bacterial species using a zone of inhibition assay and microtiter-based methods. Nanoparticles with a narrow dimension range of 12 to 30 nm were identified using TEM analysis. The SEM was employed to view the sizeable flakes of the AgNPs/MMT. At 416 nm, the most excellent UV absorption was measured. Four silver metallic diffraction peaks were found in the XRD pattern during the study, and the EDX spectrum revealed a strong signal attributed to Ag nanocrystals. AgNPs/MMT figured out the powerful antibacterial action. The AgNPs/MMT nanocomposite confirmed outstanding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six isolates of foodborne pathogens, ranging from 15 to 75 µg/mL, respectively. The AgNPs/MMT's antibacterial potential against gram-negative bacteria was noticeably better than gram-positive bacteria. Therefore, the AgNPs/MMT nanocomposite has the potential to be used as a reliable deactivator in food processing and preservation to protect against foodborne pathogenic bacteria. This suggests that the nanocomposite may be effective at inhibiting the growth and proliferation of harmful bacteria in food, which could help to reduce the risk of foodborne illness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.