Abstract

A novel carbon-supported cyanogel (C@cyanogel)-derived strategy is used to synthesize an intermetallic Pd3Fe/C compound of the desired ordered Pd3Fe phase with a small particle size. The novelty of this work lies in using carbon-supported K2PdIICl4/K4FeII(CN)6 cyanogel as a reaction precursor, generated through the substitution of two chloride ligands by the nitrogen ends of the cyanide ligands on the metal center. The inherent nature of cyanogels can effectively suppress the movement of Pd0 and Fe0 nuclei in the crystal, benefiting the formation of the intermetallic, which is otherwise challenging via traditional synthesis techniques. The ordered Pd3Fe/C catalyst exhibits excellent catalytic activity and good cycle stability for the formic acid oxidation (FAO) reaction relative to the properties of disordered Pd3Fe/C and commercial Pd/C catalysts, demonstrating that the ordered Pd3Fe/C is a promising replacement for commercial Pd-based catalysts. The outstanding performance can be ascribed to the full isolation of active sites in the ordered Pd3Fe structure and the modified electronic structure of the active components. This work provides an effective and novel route to obtain Pd-based intermetallic compounds with potential applications in a wide range of electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.