Abstract

Fluorescence (FL) imaging guided photodynamic therapy (PDT) is becoming highly desirable for personalized therapy and precision medicine. In this study, fluorescent polymer nanoparticles TCPP@PEI/PGA were facilely synthesized through electrostatic interaction-mediated self-assembly of porphyrins tetra(4-carboxyphenyl)porphine (TCPP) and polyethylenimine (PEI), and subsequent surface modification with γ-poly(glutamic acid) (γ-PGA). TCPP served a dual function as the FL imaging probe and the photosensitizer. The as-prepared TCPP@PEI/PGA nanoparticles showed excellent water-solubility and biocompatibility, while having outstanding capabilities of in vivo bioimaging and 1O2 generation. FL bioimaging of mice and effective killing of CT 26 cells as well as CT 26 tumor-bearing mice upon laser irradiation were successfully demonstrated when using TCPP@PEI/PGA as theranostic nanoprobes. This study provides a simple but robust method to design and synthesize porphyrin-based polymer nanoparticles for theranostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call