Abstract
In this work, we report the size tunable synthesis of water-dispersed gold nanoparticles by using octadecylamine (ODA) as the reducing agent, that electrostatically complexes with the chloroaurate ions, reduces them, and subsequently caps the gold nanoparticles. Amine-capped gold nanoparticles, thus formed, were subsequently coordinated with a secondary monolayer of an anionic surfactant, sodium bis(2-ethylhexyl)-sulfosuccinate (AOT) which helps in providing sufficient hydrophilicity to the gold nanoparticles. Functionalized gold nanoparticles were characterized by UV–vis, IR spectrophotometric, dynamic light scattering, zeta-potential and transmission electron microscopic techniques, which demonstrated high stability of gold nanoparticles in aqueous media, indicating stabilization via bilayers of ODA and AOT. The gold nanoparticles were further conjugated with a protein (bovine serum albumin) and the interaction was investigated by circular dichroism studies as well as by measuring the fluorescence quenching of the tryptophan residues of protein molecules after the binding of nanoparticles to specific sites of the protein. The binding constant and the stoichiometry values indicated that the particles with larger core size are less site-specific but show higher binding affinity with protein molecules. The use of a bio-compatible synthetic process and the stabilization of the gold nanoparticles by ODA and AOT are interesting from the point of view of making bioprobes for life science applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.