Abstract

Hydrazone compounds with remarkable nonlinear optical (NLO) properties were found with vast applications due to their cost-effective synthesis and greater stability. Therefore, we synthesized hydrazone scaffolds (TCAH1-TCAH8) by condensation reaction, and their structural confirmation was accomplished with spectroscopic methods (1H-, 13C-NMR, and HRMS). Quantum chemical calculations were also performed at B3PW91/6-311G(d,p) functional of DFT to explore electronic, structural, and chemical properties. To understand the NLO responses of afore-said chromophores, various kinds of analyses such as natural bonding orbitals (NBOs), frontier molecular orbitals (FMOs), UV-vis analysis, and density of states (DOS) were performed. Findings showed that the HOMO-LUMO energy gap in TCAH8 (3.595 eV) was found to be lower than the TCAH1-TCAH7 (4.123-3.932 eV) with a large red shift which leads to a substantial NLO response. Furthermore, strong intramolecular interactions showed the highest stabilization energy (24.1 kcal mol-1) for TCAH8 in the NBO transitions, combined with the least binding energy. The significant NLO response of TCAH4 was explored with ⟨α⟩, βtot, and ⟨γ⟩ values as 5.157 × 10-23, and 2.185 × 10-29, and 2.753 × 10-34 esu, respectively, among the entitled compounds. The recent findings may inspire scientists to develop extremely effective NLO materials for forthcoming hi-tech applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.