Abstract

In order to investigate the ground state and excited state properties of Pt(N(∧)C(∧)N)X, we have prepared a series of Pt complexes, where N(∧)C(∧)N aromatic chelates are derivatives of m-di(2-pyridinyl)benzene (dpb) and X are monoanionic and monodentate ancillary ligands including halide and phenoxide. Facile synthesis of platinum m-di(2-pyridinyl)benzene chloride and its derivatives, using controlled microwave heating, was reported. This method not only shortened the reaction time but also improved the reaction yield for most of the Pt complexes. Two Pt(N(∧)C(∧)N)X complexes have been structurally characterized by X-ray crystallography. The change of functional group does not affect the structure of the core Pt(N(∧)C(∧)N)Cl fragment. Both molecules pack as head-to-tail dimers, each molecule of the dimer related to the other by a center of inversion. The electrochemical studies of all Pt complexes demonstrate that the oxidation process occurs on the metal-phenyl fragment and the reduction process is associated with the electron accepting groups like pyridinyl groups and their derivatives. The maximum emission wavelength of the Pt(N(∧)C(∧)N)X complexes ranges between 471 and 610 nm, crossing the spectrum of visible light. Most of the Pt complexes are strongly luminescent (Φ = 0.32-0.63) and have short luminescence lifetimes (τ = 4-7 μs) at room temperature. The lowest excited state of the Pt(N(∧)C(∧)N)X complexes is identified as a dominant ligand-centered (3)π-π* state with some (1)MLCT/(3)MLCT character, which appears to have a larger (1)MLCT component than their bidentate and tridentate analogs. This results in a high radiative decay rate and high quantum yield for Pt(dpb)Cl and its analogs. However, the excited state properties of the Pt(N(∧)C(∧)N)X complexes are strongly dependent on the nature of the electron-accepting groups and substituents to the metal-phenyl fragment. A rational design will be needed to tune the emission energies of the Pt(N(∧)C(∧)N)X complexes over a wide range while maintaining their high luminescent efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call