Abstract

Dental pulp vitality is extremely important for the tooth viability, since it provides nutrition and forms the dentin. Bioactive glasses (BGs) may be promising materials for pulp repair due to their excellent abilities of rapidly bonding to bone and stimulating new bone growth. However, the unsatisfied handling property, low plasticity, and poor rapid-setting property of traditional BGs limit its application in vital pulp therapy. Spherical bioactive glasses (SBGs) exhibited higher osteogenesis and odontogenic differentiation than irregular BGs. This study focuses on the application of SBGs with rapid setting property for dental pulp repair. Here, SBGs with various compositions were successfully synthesized by a sol-gel process using dodecylamine (DDA) served as both a catalyst and a template. The maximum content of CaO in SBGs was about 15%. The non-bridge oxygen amounts of the SiO network and the apatite-forming ability increased with the content proportion of CaO and P2O5. Bioactive glass pulp capping materials (BGPCMs) were prepared by mixing the SBGs powders and the phosphate buffer solution (PBS). The K3CaH(PO4)2 and hydroxyapatite (HA) formed between SBGs particles as soon as they were mixed with PBS solution. The compressive strengths of fully set BCPCM-2 molded were measured to be 31.76±1.9577MPa after setting for 24h. The K3CaH(PO4)2 and the low crystallinity HA phases at the initial stage of solidification transformed to crystalline HA for 3days, and the compressive strength was still higher than 10MPa. Additionally, SBG-2 with a designed molar composition of 35% SiO2, 55% CaO and 10% P2O5 more promoted dental pulp cell proliferation, and could be potential pulp capping applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call