Abstract

ABSTRACT3-(4-Hydroxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (1) is condensed with acetophenone to afford the corresponding unsaturated carbonyl compound 4 whose potassium salt is reacted with 1,4-dibromobutane to afford the bis-unsaturated carbonyl compound 3. Both carbonyl compounds 3 and 4 are reacted with 2-cyanoethanethioamide, through Michael addition reaction followed by cyclocondensation, to prepare the starting materials bis(pyridine-2(1H)-thione) derivative 5 and pyridine-2(1H)-thione derivative 8. Two synthetic routes to synthesize the target materials 7 and 14 are described to get the most efficient method for preparation and maximum yield%. The first route came from the direct alkylation of the bis(pyridine-2(1H)-thione) derivative 5 using iodomethane (6a) and benzyl chloride (6b) to afford the corresponding bis(2-S-alkylpyridine) derivatives 7a,b. The reaction of 5 with halo-containing compounds 10a–d to synthesize the target materials bis(3-aminothieno[2,3-b]pyridine) derivatives 14a–d failed under various reaction conditions. The second route involves the reaction of pyridine-2(1H)-thione derivative 8 with 6a,b and 10a–d to afford the corresponding 2-S-alkylpyridine derivatives 9a,b and 3-aminothieno[2,3-b]pyridine derivatives 13a–d, through the formation of 2-S-alkylpyridine derivatives 12a–d followed by a Thrope-Ziegler reaction, whose potassium salts reacted with 1,4-dibromobutane to afford the corresponding target materials 7a,b and 14a–d, respectively. The structures of target molecules were elucidated using elemental analyses and spectral data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call