Abstract

Defects at the surface and grain boundaries of the perovskite films are extremely detrimental to both the efficiency and stability of perovskite solar cells (PSCs). Herein, a simple and stable quaternary ammonium halide, named chlormequat chloride (i.e., chlorinated choline chloride, CCC), is introduced to regulate the upper surface chemical environment of perovskite films. The anion (Cl−) and cation [ClCH2CH2N(CH3)3]+ in CCC could effectively self-search and passivate positively and negatively charged ionic defects in perovskites, respectively, which contributes to inhibited nonradiative recombination and reduced energy loss in PSCs. As a result, the champion power conversion efficiency (PCE) of PSCs can be significantly enhanced from 22.82% to 24.07%. Moreover, the unencapsulated device with CCC modification retains 92.0% of its original PCE even subject to thermal aging at 85 °C for 2496 h. This work provides guidance for the rational design of functional molecules as defect passivators in PSCs, which is beneficial for the improvements in both device performance and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.