Abstract

Tough conductive eutectogel fibers synthesized based on deep eutectic solvents (DESs) have attracted increasing attention in fields of flexible/stretchable electronics, due to their promising stretchability, mechanical strength, conductivity, and relatively inexpensive cost. However, it is still challenging to fabricate such high-performance eutectogel fibers in a simple and versatile strategy. Here, we report a facile spinning of tough conductive eutectogel fibers based on one-pot photopolymerization and Li+-induced toughening effect. This photopolymerization allows the formation of eutectogel into a long fiber format within seconds. The introduction of Li salt into the DESs can regulate the hydrogen bonding interactions, which can significantly promote the construction of a dense interchain hydrogen-bonding network in the eutectogel. Consequently, the spun eutectogel fibers exhibit outstanding Young’s modulus (103.8 MPa), high toughness (38 MJ/m3), promising stretchability (>300 %), conductivity (6 × 10-3 S/m), and good thermal stability at high temperature. The mechanical properties of the resultant eutectogel fibers can also be modulated by varying the DESs constituents. We demonstrate the multifunction of the fibers in shape-memory behavior, strain sensing, and recyclability. This facile spinning strategy offers a promising way to develop super-strong and conductive gel fibers as smart materials for diverse flexible and wearable device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.