Abstract
The research for highly efficient and stable electrocatalysts in fuel cells has attracted substantial interest. Herein, bimetallic alloyed Pt71Co29 lamellar nanoflowers (LNFs) with abundant active sites were obtained by a one-pot solvothermal method, where cetyltrimethylammonium chloride (CTAC) and 1-nitroso-2-naphthol (1-N-2-N) served as co-structure-directors, while oleylamine (OAm) as the solvent and reducing agent. The fabricated Pt71Co29 LNFs exhibited the higher mass activity (MA, 128.29 mA mg−1) for oxygen reduction reaction (ORR) than those of home-made Pt48Co52 nanodendrites (NDs), Pt79Co21 NDs and commercial Pt black with the values of 39.46, 49.42 and 22.91 mA mg−1, respectively. Meanwhile, the MA (666.23 mA mg−1) and specific activity (SA, 2.51 mA cm−2) of the constructed Pt71Co29 LNFs for methanol oxidation reaction (MOR) are superior than those of Pt48Co52 NDs (213.91 mA mg−1, 1.99 mA cm−2), Pt79Co21 NDs (210.09 mA mg−1, 1.12 mA cm−2) and Pt black (57.03 mA mg−1, 0.25 mA cm−2). Also, the Pt71Co29 LNFs catalyst exhibited the best durable ability relative to the references. This work demonstrates that the developed strategy provides a facile platform for synthesis of high-performance, low-cost and robust catalysts in practical catalysis, energy storage and conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.