Abstract

Spinel materials are gradually becoming promising materials for high infrared emissivity owing to their unique crystal structure. However, the facile low-temperature solid-state synthesis of infrared radiation materials with superior emissivity remains a tremendous challenge. Herein, a general and simple approach for scalable synthesis of CuFe2O4 samples with spinel structure at low temperatures is smartly developed. The optimal experimental conditions for the infrared emissivity of CuFe2O4 are obtained by the detailed investigation into experimental parameters including calcination temperatures, heating rates, and the mass of polyvinyl pyrrolidone. Under the optimal experimental conditions, the infrared emission values of CuFe2O4 in the wavelength range of 3–5 μm can be as high as 0.986. More significantly, the work here will provide significant guidance for the efficient preparation of spinel materials with excellent infrared emissivity, especially at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call