Abstract
The development of electrode materials with excellent performance serves as the key for researchers to enhance the energy density of supercapacitors. Cobalt molybdate (CoMoO4) nanomaterials have been regarded as one of the most prospective electrode materials for supercapacitors due to their high theoretical capacitance and excellent electrical conductivity. In this paper, three kinds of CoMoO4 nanorods were prepared directly via simple and environmentally friendly solid-phase chemical reactions with solid inorganic salts as raw materials. According to X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) test results, different reagents had certain effects on the size and morphology of CoMoO4, and these affected its electrochemical performance. In particular, the samples prepared with Co(NO3)2·6H2O as raw material took on a more uniform micromorphology, with a better crystallinity. Simultaneously, electrochemical test results showed that the samples synthesized with Co(NO3)2·6H2O presented relatively good electrical conductivity and a large specific capacitance (177 F g-1). This may be due to the nitrates reacting more slowly during the reaction and the crystals having difficulty aggregating during growth. Therefore, the structure of the prepared CoMoO4 nanomaterial was more uniform, and it was resistant to collapse during the charging and discharging process; thus, the capacitor presents the best performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.