Abstract

Phosphorus anode is one of the most promising candidates for high-energy-density lithium-ion batteries. Recent studies found the lithiation process of phosphorus is accompanied by the soluble intermediates of lithium polyphosphides. The trans-separator diffusion of polyphosphides is responsible for the capacity decay. Herein, a facile separator modification strategy is proposed for improving the performance of phosphorus anode. The lightweight CNT-modified layer that has a continuous conductive skeleton, a dense structure, and a strong interaction with the soluble lithium polyphosphides can trap, stabilize, and reactivate the active material. Without sophisticated electrode structure design, the cyclability and high-rate performance of the phosphorus anode has been significantly improved, leading to a higher specific capacity of 1505 mAh/g at 250 mA/g (200th cycle) and 1312 mAh/g at 2 A/g. With the advantages of simplicity and low cost, the separator modification strategy provides a new feasible way for further improvement of the phosphorus-based anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.