Abstract

In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call