Abstract
NiO nanostructures with three distinct morphologies were fabricated by a sol-gel method and their morphology-dependent supercapacitor properties were exploited. The nanoflower- shaped NiO with a distinctive three-dimensional (3D) network and the highest pore volume shows the best supercapacitor properties. The nanopores in flower-shaped nanostructures, offering advantages in contact with and transport of the electrolyte, allow for 3D nanochannels in NiO structure, providing longer electron pathways. The XPS and EIS data of the NiO nanostructure confirm that the flower-shaped NiO, which has the lowest surface area among the three morphologies, was effectively optimized as a superior electrode and yielded the greatest pseudocapacitance. This study indicates that forming a 3D nanonetwork is a straightforward means of improving the electrochemical properties of a supercapacitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.