Abstract

A facile, environmentally friendly synthetic route was developed to prepare nano-Ni core mesoporous-silica shell particles. Ethylenediaminetetraacetic disodium salt (EDTA) was the chelating agent and thus controlled the nucleation rate of the nano-Ni core. In this work, EDTA was used to regulate the reduction rate of nickel acetate. Thereby, by varying the amount of EDTA utilized in reaction medium, the size of nano-Ni can be readily controlled in the range of 40–80 nm. The mesoporous silica shell was fabricated by the Stober method. The nano-Ni core mesoporous-silica shell particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV spectrophotometry (UV/vis) was used to analyse the growth mechanism of the nano-Ni cores. The as-synthesized nano-Ni core mesoporous silica shell particles were found to show a good catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in the presence of an excess amount of NaBH4. The magnetic properties, catalytic mechanism and the possibility of reusability were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.