Abstract

Abstract LiFePO4/C cathode material is largely used in Li-ion batteries due to its low toxicity, nonhazardous and high stability features. A facile and simple approach is proposed in LiFePO4/C production using low-cost materials. The effect of carbon addition during the formation of LiFePO4/C was investigated. Based on the XRD and FTIR analyses, olivine-structured LiFePO4/C cathode material was successfully obtained via methanol-based rheological method. The SEM result showed that the material has micron-sized polyhedral shape. The electrochemical performance tests were conducted in an 18,650-type cylindrical battery. The charge–discharge performances were tested at a voltage range of 2.2–3.65 V using charge and discharge rate of 1C. Based on the charge–discharge test, LiFePO4 with 30% carbon addition has the highest specific capacity of 121 mA h/g with excellent cycle and rate performance as a result of successful carbon compositing in LiFePO4 material. This approach is promising to be adapted for mass production of LiFePO4/C.

Highlights

  • LiFePO4/C cathode material is largely used in Li-ion batteries due to its low toxicity, nonhazardous and high stability features

  • The final LFP precursor composite was heated in a tube furnace at 700°C for 12 h under a flow of nitrogen gas

  • The production of LiFePO4/C precursors was carried out using the coprecipitation method with materials in the form of technical FeSO4

Read more

Summary

Introduction

Abstract: LiFePO4/C cathode material is largely used in Li-ion batteries due to its low toxicity, nonhazardous and high stability features. A facile and simple approach is proposed in LiFePO4/C production using low-cost materials. The charge–discharge performances were tested at a voltage range of 2.2–3.65 V using charge and discharge rate of 1C. Based on the charge–discharge test, LiFePO4 with 30% carbon addition has the highest specific capacity of 121 mA h/g with excellent cycle and rate performance as a result of successful carbon compositing in LiFePO4 material. This approach is promising to be adapted for mass production of LiFePO4/C

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call