Abstract

ABSTRACT Nowadays, nanoscale materials have been widely applied in the removal of contaminants from the water system. Reduction of Cr(VI) (as a poisonous species) to Cr(III) (as a slight toxic species) was performed using CuO-Kaolin with ultrasound (US) irradiation. The CuO-Kaolin nanocomposite was synthesized via a facile co-precipitation method. Then X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and Energy dispersive X-ray spectroscopy analyses were performed to identify the structural features of CuO-Kaolin. The role of influential parameters for the reduction of Cr(VI) was investigated in sonocatalytic advanced oxidation system. About 89.35% of Cr(VI) was removed via US/CuO-Kaolin process after 90 min at optimum conditions (pH = 3, sonocatalyst dosage = 1 g L−1 and [Cr (VI)]0 = 20 mg L−1). This outstanding result was due to the synergistic effect of the increased electron delivery to conduction band on CuO-Kaolin nanocomposite and the increased reactive surface region of nanoparticles by sonication. The presence of H2O2 as an amplifier improved the removal efficiency of Cr(VI) from 89.35% to 100% after 20 min. Kinetic experimental results were well described by a pseudo-first-order kinetic model. Desorption experiments showed excellent stability of sonocatalyst during the reaction and maintenance of the catalytic activity up to 10 sequential cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call