Abstract

Penicillium expansum, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with Escherichia coli BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from P. expansum: PeTS1, a new (+)-aristolochene synthase, and PeTS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by PeTS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call