Abstract

Low cost non-noble metal electrocatalysts are highly desirable for the sustainable production of hydrogen as a renewable energy source. Molybdenum carbide (Mo2C) has been considered as the promising non-noble metal electrocatalyst for the hydrogen production via hydrogen evolution reaction (HER) through water splitting. The nanostructured nitrogen (N) incorporated carbon (C) coupled with Mo2C is the potential candidate to boost the HER activity and electrode material for the energy conversion applications. In this work, nitrogen incorporated carbon coated Mo2C (Mo2C@C/N) has been synthesized in an eco-friendly way using waste plastic as the carbon source. The pure phase Mo2C@C/N has been synthesized at 700 and 800 °C for 10 h. The relatively higher temperature synthesized phase shows enhanced HER activity with lower Tafel slope (72.9 mVdec−1) and overpotential of 186.6 mV to drive current density of 10 mAcm−2. It also exhibits stability up to 2000 cyclic voltammetry (CV) cycles and retains the current density with negligible loss for 10 h. The higher temperature synthesized phase exhibits higher electrochemical active surface area (ECSA) and enhanced HER kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.