Abstract
Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO3H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H2SO4 at 180°C gave mesoporous carbon bearing SO3H groups (SO3H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO3H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m2 g-1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g-1 of SO3H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.