Abstract

Dispersion of graphene in solvents is of crucial importance toward its practical applications. In this study, using a water-soluble carboxylated aniline trimer derivative (CAT(-)) as a stabilizer, the commercial graphene can be stably dispersed in water at high concentration (>1 mg/mL) via strong π-π interaction that was proved by Raman and UV-vis spectra. Moreover, the CAT(-)-functionalized graphene sheets (G-CAT(-) hybrid) exhibited high conductivity (∼1.5 S/cm), good electroactivity and improved electrochemical stability. The addition of well-dispersed graphene into waterborne epoxy system (G-CAT(-)/epoxy) remarkably improved corrosion protection compared with pure waterborne epoxy coating, based on a series of electrochemical measurements performed under 3.5% NaCl solution. This significantly enhanced anticorrosion performance is mainly due to the improved water barrier properties derived from highly dispersed graphene nanosheets in the epoxy coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call