Abstract
Pore-enlarged mesoporous silica nanoparticles (MSNs) were prepared directly from as-prepared MSNs through a new, simple method using divalent Ca or Mg salts as both efficient silica etching reagents and as ion exchangers in methanolic solution under mild conditions. The resultant MSNs became almost template-free simultaneously during this etching process. The pore-enlarged MSNs, referred to as Ca-MSN or Mg-MSN, maintained their original hexagonal pore symmetry and particle sizes, but several ultra-large mesopores were generated inside and outside the MSNs together with regular mesopores having expanded pore dimension of around 4-5 nm. The average pore diameters for ultra-large pores were 47.5 nm for Ca-MSN and 52.4 nm for Mg-MSN. The generation of ultra-large pores can be regarded as the collapse of several mesopores into an ultra-large pore. Both Ca-MSN and Mg-MSN were good sorbents for positively charged porphyrin molecules. Additionally, these ultra-large pore MSNs exhibited better adsorption ability than calcined MSN for large proteins and antibodies, such as bovine serum albumin (BSA) and immunoglobulin G (IgG).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.