Abstract
In the work, sulfhydryl functionalized montmorillonite nanosheets based hydrogel balls were firstly synthesized for Pb(II) adsorption, and then characterized by scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), surface area analyzer (BET), thermogravimetry (TG), and zeta potential. Effects of initial solution pH, adsorbent dosage, contact time, temperature on Pb(II) adsorption of the resulting hydrogel balls were investigated systematically. The experimental results showed that the increase amount of sulfhydryl functionalized montmorillonite nanosheets (MMTNs-SH) maintained the hydrogel balls a better porous structure and bigger specific surface area, endowing it a bigger adsorption capacity. The adsorption process was fitted well with pseudo-second-order kinetics model and Freundlich model, and more than 97% of Pb(II) could be removed under the optimum conditions. Moreover, hydrogel spheres have a certain cycle performance. In addition, the interactions between Pb(Ⅱ) ions and the oxygen atoms in the hydroxyl groups and the sulfur atoms in the sulfhydryl groups, and the ion exchange in MMTNs-SH dominated the adsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.