Abstract

We report here a facile electrochemical method on the preparation of antimony nanoparticles (NPs) by dispersing a bulk antimony electrode under highly cathodic polarization in different media at room temperature, requiring neither precursor ions nor organic capping agents. The dispersion of bulk antimony in a tetrabutyl ammonium bromide (TBAB) acetonitrile solution involved the formation and oxidation of an unstable Zintl compound of antimony, and the as-prepared Sb NPs were readily transferred into Sb–Sb2O3 core–shell NPs during the post treatment and characterization because of the surface oxidation of Sb NPs by oxygen in the air. In contrast, Sb NPs prepared by dispersing the bulk antimony cathode in a blank aqueous NaOH solution were oxygen-resistant in the air because the strongly adsorbed hydroxide ions from the solution could stabilize the Sb NPs. The incorporation of sodium, the formation/oxidation of polyanions of antimony (Zintl ions), and the formation/decomposition of unstable antimony hydrides may all take effect for the cathodic dispersion of bulk antimony electrodes in the NaOH solution. Transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.