Abstract

Herein, we report a facile and efficient method for fabricating porous carbon flakes (PCFs)-supported nickel nanoplates (Ni NPs) as electrocatalysts for methanol oxidation in alkaline media. The catalyst was fabricated in one step using molten salt synthesis. Various techniques were used to characterize the morphology and composition of the Ni NPs@PCFs catalyst, and these revealed that the Ni NPs were dispersed finely across the PCFs with a highly crystalline structure. The Ni NPs@PCFs catalyst demonstrated high electrocatalytic activity for methanol oxidation (121 mA/cm2 vs. Ag/AgCl), and it had an onset potential of 0.35 V. It also exhibited high stability in an alkaline electrolyte for the duration of the experiment (up to 2000 s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.