Abstract

Infection, oxidative stress, and inflammation are the major obstacles to cutaneous wound healing. Designing adhesive wound dressings with inherent antibacterial and antioxidant properties are highly desirable. Herein, a series of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-doped multifunctional hydrogels were facilely prepared by combining quaternized carboxymethyl chitosan (QCMCS) and oxidized hyaluronate (HA-CHO). Schiff base crosslinking between amino groups in QCMCS and aldehyde groups in HA-CHO not only constructed hydrogel networks but also endowed hydrogels with good self-healing property. The hydrogel exhibited adjustable tissue adhesiveness, degradability, and rheological properties by changing the content of TEMPO groups. Moreover, the hydrogels presented excellent inherent antibacterial and antioxidant properties, along with the porous structures, swelling ability, good cytocompatibility and low hemolysis ratio, which are beneficial to promoting wound healing process. Overall, the TEMPO hydrogel showed excellent therapeutic effect in mice skin defect model, giving the hydrogel with fitness as wound dressings for treating skin wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call