Abstract

Biomass is a promising carbon source because of its low-cost and rich carbon component. Here, lotus root as self N-source was used to produce N-doped biochar via a simple carbonization after freeze-drying, showing surface areas up to 694 m2/g with partial mesopores. Applicability of biochar as adsorbent for dyes removal was explored using methyl orange (MO) as model pollutant dye. LBC-800 sample obtained at 800 °C had the largest capacity of 320 mg/g in 300 mg/L solution at 25 °C with fast equilibrium time of 60 min, and pseudo-second order model expressed better for kinetics. LBC-800 also had an unprecedented maximum capacity of 449 mg/g with superior conformity to Langmuir model. The biochar was efficient for MO removal with high capacity and fast kinetic, and significantly the sustainable feature of lotus root would allow a large-scale production of biochar as well as promising use in wastewater treatment fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.