Abstract

Herein, in-house built heating chamber aided facile preparation of biochar was carried out using Bangladeshi sprouted corncob as the precursor for removing methylene blue (MB). The corncob biomass (CCB) was pyrolyzed at 700 °C for 2hrs (heating rate: 10 °C/min) using the in-house built heating chamber in a muffle furnace, eliminating the necessity of pyrolytic chamber. The prepared corncob biochar (CCBC) was characterized for elemental composition, crystallinity (XRD), functional groups (ATR-FTIR), surface morphology-elemental composition (SEM-EDX), surface area (BET), surface charge (point of zero charge), particle size-stability (DLS-zeta potential) and thermal stability (STA). Adsorption efficacy of CCBC was investigated in batch experiment with MB dye as well as effect of various factors such as contact time (5–120 min), initial MB concentration (7–15 mg/L), pH (2–10) and adsorbent dosage (10–35 mg). Without any chemical treatment for activation, CCBC produced maximum adsorption capacity (Qmax) of 20.42mgg−1 at 25 °C. The adsorption behavior of MB by CCBC could be better understood by Langmuir isotherm and Pseudo-second order kinetic model as they were the best fitted isotherm and kinetic models. Thus, waste to treat waste, meaning agricultural wastes like corncob can easily be converted into effective adsorbent for treating dye bearing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.