Abstract

In this paper, a hydrothermal approach is utilized for the first time in integrating graphene oxide (GO), acetic acid (HAc) and nickel foam to prepare hydrogenated graphene (HG). There are two primary aims of this study: one is to ascertain the structure of the as-prepared HG, and the other one is to investigate the ferromagnetism of the HG. Under hydrothermal conditions, GO was reduced and hydrogenated by HAc, while the nickel foam served as a catalyst. This work provides a novel and facile route for the synthesis of hydrogenated graphene, which may lead to the application of hydrogenated graphene in spin electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call