Abstract
Hybridization of nanocellulose with zinc oxide nanoparticles can improve the dispersibility of the zinc oxide and bring new functions to the bio-based products. In this study, cellulose nanocrystal/zinc oxide (CNC/ZnO) nanohybrids with reinforcing and antibacterial properties were prepared via a facile one-pot route. Microcrystalline cellulose (MCC) was first treated with acidified zinc chloride and hydrolyzed into CNCs, which then served as a stabilizing and supporting agent for the in-situ growth of ZnO nanoparticles during subsequent chemical precipitation. The acidified ZnCl2 solution played a dual role, acting both as cellulose hydrolytic media and as ZnO precursor. By adjusting the pH of the zinc precursor solution (pH = 9–12), well-dispersed rod-like (length: 137.0–468.0 nm, width: 54.1–154.1 nm) and flower-like (average diameter: 179.6 nm) ZnO nanoparticles with hexagonal wurtzite structure were obtained. CNC/ZnO nanohybrids were incorporated into waterborne polyurethane (WPU) films. The Young's modulus and tensile strength of the nanocomposite films increased gradually from 154.8 to 509.0 MPa and from 16.5 to 29.9 MPa, respectively, with increasing CNC/ZnO nanofiller content up to 10 wt%. The 10 % CNC/ZnO composites showed inhibition rates to both E. coli and S. aureus above 88.8 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.