Abstract

BiVO4 films were prepared by a screen-printing technique on Corning glass substrate. The material employed to prepare the films was synthetized by the hydrothermal method. For comparative purposes, the BiVO4 was synthesized via solid state reaction and deposited in film form by the same technique. From the X-ray diffraction structural characterization it has been stated that BiVO4 films crystallized in the monoclinic structure. The characterization of BiVO4 films was complemented with scanning electron microscopy, which revealed a morphology of irregular form and dendritic type depending on the starting material. The thickness of the BiVO4 films were determined by profilometry. The film obtained from the hydrothermal method showed minor photoluminescence, i.e., the sample showed low recombination of electron–hole pairs. The highest photocatalytic activity in the degradation of tetracycline (TC) was presented for the BiVO4 films obtained from hydrothermal powders under simulated sunlight irradiation; attributed mainly to the surface area value, smaller particle size and lower recombination of electron–hole pairs. Mineralization degree of TC by BiVO4 films was determined by the total organic carbon analysis, reaching 50% after 24 h of irradiation. The main oxidizing species that was most influenced in the degradation of TC was the hydroxyl radical (OH·).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call