Abstract

The severe preparation process, poor swelling properties and mechanical properties of traditional cellulose and polyvinyl alcohol (PVA) composite hydrogels heavily limited their practical applications. To solve these issues, we use long-chain hydroxyethyl celluloses (HECs) as framework backbones, short-chain PVAs as branched chains, lignin molecules as extended crosslinkers and epichlorohydrin molecules as crosslinkers to prepare the lignin-based hydroxyethyl cellulose-PVA (LCP) super-absorbent hydrogels in the alkaline aqueous solution under mild reaction conditions, demonstrating high swelling ratio of up to 1220 g/g. The LCP hydrogels could take up large amounts of positively charged dyes rhodamine 6G, crystal violet and methylene blue with uptakes of 153, 184 and 196 mg/g, respectively. The LCP super-absorbent hydrogels also present excellent water retention, biodegradability and excellent swelling properties, which are very promising for applications in the fields of commercial diapers, soil water retention and seed cultivation in agriculture, and dye pollutant removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.