Abstract

The covalent organic frameworks (COFs) so far are usually built with small aromatic subunits, which makes their absorption spectra mainly located in the high-energy part of the visible region. In this work, we have developed a COF with a low band gap by integrating electron-deficient thienoisoindigo and electron-rich triphenylamine. The intramolecular charge-transfer effect combining the extended length of the π-conjugated backbone of COF endow it with broad absorption even to the second near-infrared region. After optimizing the solvent, a uniform size and colloidal stable COF is obtained. Benefiting from the coplanar structure of the monomer, this COF achieves a considerable photothermal conversion efficiency (PCE) of 48.2%. With these advantages, it displays convincing cancer cell killing effect upon laser irradiation in vitro or in vivo. This work provides a simple and practical method to acquire promising a COF-based phototherapy reagent that is applied in biomedicine field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call