Abstract

Solar-driven interfacial water evaporation is one promising technology for seawater desalination and sewage purification because it offers a feasible and sustainable strategy to relieve global water scarcity. Herein, a novel hybrid film composed of recycled carbon soot and poly(vinyl alcohol) is developed by a very simple, green, and highly scalable "salt-assisted" assembling method. The hybrid film possesses characteristics with a porous structure, superhydrophilicity, ∼100% light absorption, and low thermal conductivity, which can effectively convert light into heat under solar illumination. Consequently, the hybrid film can achieve a photothermal conversion efficiency of 91.5% under a stimulated solar irradiation of 1 kW m-2. Furthermore, the hybrid film can be applied for seawater desalination and dye wastewater purification. The findings of our work not only provide a new photothermal platform with high light-to-thermal conversion ability and good reusability but also open a new avenue for the applications of carbon soot-based hybrid films in solar-assisted water evaporation and sewage purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call