Abstract

Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.