Abstract
Sodium chloride (NaCl), commonly known as salt, is a substance that is utilized in a variety of businesses, including the tourism and construction industries. Therefore, the main purpose of this article is to accommodate a salt-based building material called NaCl-binder for tourist and industrial applications. By utilizing salt mortar with varying grain sizes, food-grade corn starch as an exclusive binder agent (without using any non-starch binder), and water under microwave-cured conditions, environmentally friendly hydrophobic hybrid NaCl-binder samples with low bulk density were successfully produced. The fabrication of these samples involved an inventive utilization of small quantities of starch. This study evaluated the impact of microwave exposure time on the strength of salt samples, particle interconnectivity and chemical composition using SEM, XRD, and XRF analyses. The compressive strength of the samples showed a remarkable increase, with a 600% improvement when using 0 to 1% corn starch, and a 137% increment when using 1 to 10% corn starch, indicating a lower rate of increment with higher starch consumption. A key aspect of this research is the significant reduction in starch consumption compared to other corn starch-based materials during the manufacturing process of the incorporated materials, highlighting its novelty and importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.