Abstract

A novel framework of azide containing photo‐crosslinkable, conducting copolymer, that is, poly(azido‐styrene)‐random‐poly(triphenylamine) (X‐PTPA), is reported as a hole‐transporting material for efficient solution‐processed, multi‐layer, organic light emitting diodes (OLEDs). A facile and energy‐efficient crosslinking process is demonstrated with UV irradiation (254 nm, 2 mW/cm2) at a short exposure time (5 min). By careful design of X‐PTPA, in which 5 mol% of the photo‐crosslinkable poly(azido‐styrene) is copolymerized with hole‐transporting poly(triphenylamine) (X‐PTPA‐5), the adverse effect of the crosslinking of azide moieties is prevented to maximize the performances of X‐PTPA‐5. Since the photo‐crosslinking chemistry of azide molecules does not involve any photo‐initiators, superior hole‐transporting ability is achieved, producing efficient devices. To evaluate the performances of X‐PTPA‐5 as a hole‐transporting/electron‐blocking layer, Ir(ppy)3‐based, solution‐processable OLEDs are fabricated. The results show high EQE (11.8%), luminous efficiency (43.7 cd/A), and power efficiency (10.4 lm/W), which represent about twofold enhancement over the control device without X‐PTPA‐5 film. Furthermore, micro‐patterned OLEDs with the photo‐crosslinkable X‐PTPA‐5 can be fabricated through standard photolithography. The versatility of this approach is also demonstrated by introducing the same azide moiety into other hole‐transporting materials such as poly(carbazole) (X‐PBC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call