Abstract

The heterojunction photocatalyst, BiOIO3/[Bi6O6(OH)3](NO3)3·1.5H2O (BiOIO3/BBN), was successfully synthesized by a simple one-step hydrothermal method. The results showed that under UV light irradiation, the formation of a heterojunction could greatly enhance the photocatalytic efficiency of the prepared catalyst for bisphenol A (BPA). The BiOIO3/BBN heterostructure had the best reaction rate constant, which was 81.82 times, 1.52 times, and 43.40 times improvement of TiO2, BiOIO3, and BBN respectively. Through the free radical capture experiments and electron spin resonance spectroscopy, it was conducted that 1O2, h+, e-, •OH and •O2– were reactive species in the process of photocatalytic degradation of BPA. The photocatalytic mechanism was further investigated and confirmed that the BiOIO3/BBN heterojunction could improve the separation and transfer of photo-generated carriers, thereby greatly enhancing the catalytic efficiency. The degradation products of BPA were detected by HPLC-MS, and the degradation reaction pathway was deduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.