Abstract

Abstract Graphitic carbon nitride (g-C 3 N 4 ) has attracted increasing interest as a visible-light-active photocatalyst. In this study, saddle-curl-edge-like g-C 3 N 4 nanosheets were prepared using a pellet presser (referred to as g-CN P nanosheets). Urea was used as the precursor for the preparation of g-C 3 N 4 . Thermal polymerization of urea in a pellet form significantly affected the properties of g-C 3 N 4 . Systematic investigations were performed, and the results for the modified g-C 3 N 4 nanosheets are presented herein. These results were compared with those for pristine g-C 3 N 4 to identify the factors that affected the fundamental properties. X-ray diffraction analysis and high-resolution transmission electron microscopy revealed a crystallinity improvement in the g-CN P nanosheets. Fourier-transform infrared spectroscopy provided clear information regarding the fundamental modes of g-C 3 N 4 , and X-ray photoelectron spectroscopy (XPS) peak-fitting investigations revealed the variations of C and N in detail. The light-harvesting property and separation efficiency of the photogenerated charge carriers were examined via optical absorption and photoluminescence studies. The valence band edge and conduction band edge potentials were calculated using XPS, and the results indicated a significant reduction in the bandgap for the g-CN P nanosheets. The Brunauer–Emmett–Teller surface area increased for the g-CN P nanosheets. The photocatalytic degradation performance of the g-CN P nanosheets was tested by applying a potential and using the classical dye Rhodamine B (RhB). The RhB dye solution was almost completely degraded within 28 min. The rate constant of the g-CN P nanosheets was increased by a factor of 3.8 compared with the pristine g-C 3 N 4 nanosheets. The high crystallinity, enhanced light absorption, reduced bandgap, and increased surface area of the saddle-curl-edge-like morphology boosted the photocatalytic performance of the g-CN P nanosheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.