Abstract

A novel sol-gel “one-pot” approach in tandem with a radical-mediated thiol-ene reaction for the synthesis of a methacrylic acid-based hybrid monolith was developed. The polymerization monomers, tetramethoxysilane (TMOS) and 3-mercaptopropyl trimethoxysilane (MPTS), were hydrolyzed in high-concentration methacrylic acid solution that also served as a hydrophilic functional monomer. The resulting solution was then mixed with initiator (2, 2′-azobis (2-methylpropionamide) dihydrochloride) and porogen (urea, polyethylene glycol 20,000) in a capillary column and polymerized in water bath. The column had a uniform porous structure and a good permeability. The evaluation of the monolith was performed by separation of small molecules including nucleosides, phenols, amides, bases and Triton X-100. The calibration curves for uridine, inosine, adenosine and cytidine were determined. All the calibration curves exhibited good linear regressions (R2≥0.995) within the test ranges of 0.5–40μg/mL for four nucleosides. Additionaliy, atypical hydrophilic mechanism was proved by elution order from low to high according to polarity retention time increased with increases in the content of the organic solvent in the mobile phase. Further studies indicated that hydrogen bond and electrostatic interactions existed between the polar analytes and the stationary phase. This was the mechanism of retention. The excellent separation of the BSA digest showed good hydrophility of the column and indicated the potential in separation of complex biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.