Abstract

Morphology of different CuO nanostructures is controlled by changing the precursor counterions. The CuO nanostructures were synthesized using three different precursor salts of copper namely acetate, nitrate, and sulfate via facile chemical precipitation route. The synthesized CuO nanostructures were thoroughly characterized using X-ray diffraction, optical spectroscopy, electron microscopy etc. The nanostructures were studied for catalytic nonenzymatic glucose sensing applications. CuO nanostructures synthesized from copper sulfate having flower-like morphology showed the highest glucose sensitivity of 1830 μAmM−1cm−2 in a linear range of 0.01–0.2 mM with a detection limit of 8 μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call