Abstract

A reduced graphene oxide-copper sulfide-zinc sulfide (rGO-CuS-ZnS) hybrid nanocomposite was synthesized using a surfactant-free in-situ microwave technique. The in-situ microwave method was used to prepare 1-D ZnS nanorods and CuS nanoparticles decorated into the rGO nanosheets. The prepared hybrid nanocomposite catalysts were analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping analysis, and X-ray photoelectron spectroscopy. The effectiveness of the synthesized rGO-CuS-ZnS hybrid nanocomposite (rGO-CZS HBNC) was estimated using an innovative cathode catalyst in microbial fuel cell (MFC). MFCs were fabricated differently such as SL (single-layer), DL (double-layer), and TL (triple-layer) loading. Followed using cyclic voltammetry and impedance analyses, the electrochemical evaluation of the prepared MFCs was evaluated. Among the fabricated MFCs, the DL MFCs with rGO-CuS-ZnS cathode catalyst displayed higher power density (1692 ± 15 mW/m2) and OCP (761 ± 9 mV) than the other catalysts loadings, such as SL and TL. rGO-CZS HBNC are potential cathode materials for MFC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call