Abstract
Radiotherapy (RT) has been extensively utilized for clinical cancer therapy, however, excessive generation of reactive oxygen species (ROS) is becoming a main cause for radiation-induced heart disease (RIHD). Ganoderma lucidum spore oil (GLSO) is a popular functional food composite with potent antioxidant activity, but it is compromised by poor solubility and stability for further application. Therefore, a strategy for rational fabrication of GLSO@P188/PEG400 nanosystem (NS) is demonstrated in this study to realize good water solubility and achieve enhanced protection against RIHD. As expected, GLSO@P188/PEG400 NS can attenuate X-ray-induced excessive ROS levels thanks to its enhanced free radical scavenging capability, simultaneously protecting on mitochondria from X-ray irradiation (IR). Moreover, GLSO@P188/PEG400 NS alleviates DNA damage and promotes self-repair processes against IR, thus recovering G0/G1 proportion back to normal levels. Furthermore, pre- and post-treated GLSO@P188/PEG400 NS demonstrates potential protection on heart from X-rays in vivo, as evidenced by attenuating cardiac dysfunction and myocardial fibrosis. Meanwhile, the cell antioxidant capacity (including T-SOD, MDA, and GSH-x) stays in balance during this process. This study not only provides a promising strategy for facile nanolization of functional food composites with hydrophobic defects but also sheds light on their cardiac protection and action mechanisms against IR-induced disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.